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 Dirty Dozen: Twelve P-Value Misconceptions
teven Goodman

The P value is a measure of statistical evidence that appears in virtually all medical
research papers. Its interpretation is made extraordinarily difficult because it is not part of
any formal system of statistical inference. As a result, the P value’s inferential meaning is
widely and often wildly misconstrued, a fact that has been pointed out in innumerable
papers and books appearing since at least the 1940s. This commentary reviews a dozen of
these common misinterpretations and explains why each is wrong. It also reviews the
possible consequences of these improper understandings or representations of its mean-
ing. Finally, it contrasts the P value with its Bayesian counterpart, the Bayes’ factor, which
has virtually all of the desirable properties of an evidential measure that the P value lacks,
most notably interpretability. The most serious consequence of this array of P-value
misconceptions is the false belief that the probability of a conclusion being in error can be
calculated from the data in a single experiment without reference to external evidence or
the plausibility of the underlying mechanism.
Semin Hematol 45:135-140 © 2008 Elsevier Inc. All rights reserved.
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 he P value is probably the most ubiquitous and at the
same time, misunderstood, misinterpreted, and occa-

ionally miscalculated index1,2 in all of biomedical research.
n a recent survey of medical residents published in JAMA,
8% expressed fair to complete confidence in interpreting P
alues, yet only 62% of these could answer an elementary
-value interpretation question correctly.3 However, it is not

ust those statistics that testify to the difficulty in interpreting
 values. In an exquisite irony, none of the answers offered
or the P-value question was correct, as is explained later in
his chapter.

Writing about P values seems barely to make a dent in the
ountain of misconceptions; articles have appeared in the

iomedical literature for at least 70 years4-15 warning re-
earchers of the interpretive P-value minefield, yet these les-
ons appear to be either unread, ignored, not believed, or
orgotten as each new wave of researchers is introduced to the
rave new technical lexicon of medical research.
It is not the fault of researchers that the P value is difficult

o interpret correctly. The man who introduced it as a formal
esearch tool, the statistician and geneticist R.A. Fisher, could
ot explain exactly its inferential meaning. He proposed a
ather informal system that could be used, but he never could
escribe straightforwardly what it meant from an inferential
tandpoint. In Fisher’s system, the P value was to be used as

epartments of Oncology, Epidemiology, and Biostatistics, Johns Hopkins
Schools of Medicine and Public Health, Baltimore, MD.

ddress correspondence to Steven Goodman, MD, MHS, PhD, 550 N Broad-

hway, Suite 1103, Baltimore, MD, 21205. E-mail: Sgoodman@jhmi.edu

037-1963/08/$-see front matter © 2008 Elsevier Inc. All rights reserved.
oi:10.1053/j.seminhematol.2008.04.003
 rough numerical guide of the strength of evidence against
he null hypothesis. There was no mention of “error rates” or
ypothesis “rejection”; it was meant to be an evidential tool,
o be used flexibly within the context of a given problem.16

Fisher proposed the use of the term “significant” to be
ttached to small P values, and the choice of that particular
ord was quite deliberate. The meaning he intended was
uite close to that word’s common language interpretation—
omething worthy of notice. In his enormously influential
926 text, Statistical Methods for Research Workers, the first
odern statistical handbook that guided generations of bio-
edical investigators, he said:

Personally, the writer prefers to set a low standard of
significance at the 5 percent point . . . . A scientific fact
should be regarded as experimentally established only if
a properly designed experiment rarely fails to give this
level of significance.17

In other words, the operational meaning of a P value less
han .05 was merely that one should repeat the experiment. If
ubsequent studies also yielded significant P values, one
ould conclude that the observed effects were unlikely to be
he result of chance alone. So “significance” is merely that:
orthy of attention in the form of meriting more experimen-

ation, but not proof in itself.
The P value story, as nuanced as it was at its outset, got

ncomparably more complicated with the introduction of the
achinery of “hypothesis testing,” the mainstay of current
ractice. Hypothesis testing involves a null and alternative

ypothesis, “accepting and rejecting” hypotheses, type I and
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136 S. Goodman
I “error rates,” “power,” and other related ideas. Even though
e use P values in the context of this testing system today, it

s not a comfortable marriage, and many of the misconcep-
ions we will review flow from that unnatural union. In-
epth explanation of the incoherence of this system, and the
onfusion that flows from its use can be found in the litera-
ure.16,18-20 Here we will focus on misconceptions about how
he P value should be interpreted.

The definition of the P value is as follows—in words: The
robability of the observed result, plus more extreme results, if the
ull hypothesis were true; in algebraic notation: Prob(X � x |
o), where “X” is a random variable corresponding to some
ay of summarizing data (such as a mean or proportion), and

x” is the observed value of that summary in the current data.
his is shown graphically in Figure 1.
We have now mathematically defined this thing we call a P

alue, but the scientific question is, what does it mean? This is
ot the same as asking what people do when they observe
�.05. That is a custom, best described sociologically. Ac-

ions should be motivated or justified by some conception of
oundational meaning, which is what we will explore here.

igure 1 Graphical depiction of the definition of a (one-sided) P
alue. The curve represents the probability of every observed out-
ome under the null hypothesis. The P value is the probability of the
bserved outcome (x) plus all “more extreme” outcomes, repre-
ented by the shaded “tail area.”

able 1 Twelve P-Value Misconceptions

1 If P � .05, the null hypothesis has only a 5
2 A nonsignificant difference (eg, P >.05) me
3 A statistically significant finding is clinically
4 Studies with P values on opposite sides of
5 Studies with the same P value provide the s
6 P � .05 means that we have observed data
7 P � .05 and P <.05 mean the same thing.
8 P values are properly written as inequalities
9 P � .05 means that if you reject the null hy

10 With a P � .05 threshold for significance, t
11 You should use a one-sided P value when y

that direction is impossible.

12 A scientific conclusion or treatment policy should
Because the P value is not part of any formal calculus of
nference, its meaning is elusive. Below are listed the most
ommon misinterpretations of the P value, with a brief dis-
ussion of why they are incorrect. Some of the misconcep-
ions listed are equivalent, although not often recognized as
uch. We will then look at the P value through a Bayesian lens
o get a better understanding of what it means from an infer-
ntial standpoint.

For simplicity, we will assume that the P value arises from
two-group randomized experiment, in which the effect of

n intervention is measured as a difference in some average
haracteristic, like a cure rate. We will not explore the many
ther reasons a study or statistical analysis can be misleading,
rom the presence of hidden bias to the use of improper
odels; we will focus exclusively on the P value itself, under

deal circumstances. The null hypothesis will be defined as
he hypothesis that there is no effect of the intervention (Ta-
le 1).
Misconception #1: If P�.05, the null hypothesis has only a

% chance of being true. This is, without a doubt, the most
ervasive and pernicious of the many misconceptions about
he P value. It perpetuates the false idea that the data alone
an tell us how likely we are to be right or wrong in our
onclusions. The simplest way to see that this is false is to
ote that the P value is calculated under the assumption that
he null hypothesis is true. It therefore cannot simultaneously
e a probability that the null hypothesis is false. Let us sup-
ose we flip a penny four times and observe four heads,
wo-sided P � .125. This does not mean that the probability
f the coin being fair is only 12.5%. The only way we can
alculate that probability is by Bayes’ theorem, to be dis-
ussed later and in other chapters in this issue of Seminars in
ematology.21-24

Misconception #2: A nonsignificant difference (eg, P �.05)
eans there is no difference between groups. A nonsignificant
ifference merely means that a null effect is statistically con-
istent with the observed results, together with the range of
ffects included in the confidence interval. It does not make
he null effect the most likely. The effect best supported by
he data from a given experiment is always the observed
ffect, regardless of its significance.

Misconception #3: A statistically significant finding is clini-

nce of being true.
ere is no difference between groups.
rtant.
e conflicting.
evidence against the null hypothesis.

ould occur only 5% of the time under the null hypothesis.

“P <.02” when P � .015)
sis, the probability of a type I error is only 5%.
nce of a type I error will be 5%.
n’t care about a result in one direction, or a difference in
% cha
ans th
impo

.05 ar
ame
that w

(eg,
pothe
he cha
ou do
be based on whether or not the P value is significant.



c
b
i
t
t
o
s
s

.
n
i
i
c
u
t
a

s
o
t
(
e
.
d
o
a
a
t
a
n

fi
T
.
I
i
i

g
w
s

d
e
v
m
t
p
a
u
t
l
p
v
t
o

r
a

t
g
o

i
l
s
w
e
g
d
r
c

t
i
d
d
e
c
d

i
i
o
“
.

F
c
p
r

Twelve P-value misconceptions 137
ally important. This is often untrue. First, the difference may
e too small to be clinically important. The P value carries no

nformation about the magnitude of an effect, which is cap-
ured by the effect estimate and confidence interval. Second,
he end point may itself not be clinically important, as can
ccur with some surrogate outcomes: response rates versus
urvival, CD4 counts versus clinical disease, change in a mea-
urement scale versus improved functioning, and so on.25-27

Misconception #4: Studies with P values on opposite sides of
05 are conflicting. Studies can have differing degrees of sig-
ificance even when the estimates of treatment benefit are

dentical, by changing only the precision of the estimate, typ-
cally through the sample size (Figure 2A). Studies statisti-
ally conflict only when the difference between their results is
nlikely to have occurred by chance, corresponding to when
heir confidence intervals show little or no overlap, formally
ssessed with a test of heterogeneity.

Misconception #5: Studies with the same P value provide the
ame evidence against the null hypothesis. Dramatically different
bserved effects can have the same P value. Figure 2B shows
he results of two trials, one with a treatment effect of 3%
confidence interval [CI], 0% to 6%), and the other with an
ffect of 19% (CI, 0% to 38%). These both have a P value of
05, but the fact that these mean different things is easily
emonstrated. If we felt that a 10% benefit was necessary to
ffset the adverse effects of this therapy, we might well adopt
therapy on the basis of the study showing the large effect

nd strongly reject that therapy based on the study showing
he small effect, which rules out a 10% benefit. It is of course
lso possible to have the same P value even if the lower CI is
ot close to zero.
This seeming incongruity occurs because the P value de-

nes “evidence” relative to only one hypothesis—the null.
here is no notion of positive evidence—if data with a P �

05 are evidence against the null, what are they evidence for?
n this example, the strongest evidence for a benefit is for 3%
n one study and 19% in the other. If we quantified evidence
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A B
igure 2 Figure showing how the P values of very different signifi-
ance can arise from trials showing the identical effect with different
recision (A, Misconception #4), or how same P value can be de-
ived from profoundly different results (B, Misconception #5).
n a relative way, and asked which experiment provided s
reater evidence for a 10% or higher effect (versus the null),
e would find that the evidence was far greater in the trial

howing a 19% benefit.13,18,28

Misconception #6: P � .05 means that we have observed
ata that would occur only 5% of the time under the null hypoth-
sis. That this is not the case is seen immediately from the P
alue’s definition, the probability of the observed data, plus
ore extreme data, under the null hypothesis. The result with

he P value of exactly .05 (or any other value) is the most
robable of all the other possible results included in the “tail
rea” that defines the P value. The probability of any individ-
al result is actually quite small, and Fisher said he threw in
he rest of the tail area “as an approximation.” As we will see
ater in this chapter, the inclusion of these rarer outcomes
oses serious logical and quantitative problems for the P
alue, and using comparative rather than single probabilities
o measure evidence eliminates the need to include outcomes
ther than what was observed.
This is the error made in the published survey of medical

esidents cited in the Introduction,3 where the following four
nswers were offered as possible interpretations of P �.05:

a. The chances are greater than 1 in 20 that a difference
would be found again if the study were repeated.

b. The probability is less than 1 in 20 that a difference this
large could occur by chance alone.

c. The probability is greater than 1 in 20 that a difference
this large could occur by chance alone.

d. The chance is 95% that the study is correct.

The correct answer was identified as “c”, whereas the ac-
ual correct answer should have read, “The probability is
reater than 1 in 20 that a difference this large or larger could
ccur by chance alone.”
These “more extreme” values included in the P-value def-

nition actually introduce an operational difficulty in calcu-
ating P values, as more extreme data are by definition unob-
erved data. What “could” have been observed depends on
hat experiment we imagine repeating. This means that two

xperiments with identical data on identical patients could
enerate different P values if the imagined “long run” were
ifferent. This can occur when one study uses a stopping
ule, and the other does not, or if one employs multiple
omparisons and the other does not.29,30

Misconception #7: P � .05 and P �.05 mean the same
hing. This misconception shows how diabolically difficult it
s to either explain or understand P values. There is a big
ifference between these results in terms of weight of evi-
ence, but because the same number (5%) is associated with
ach, that difference is literally impossible to communicate. It
an be calculated and seen clearly only using a Bayesian evi-
ence metric.16

Misconception #8: P values are properly written as inequal-
ties (eg, “P �.02” when P � .015). Expressing all P values as
nequalities is a confusion that comes from the combination
f hypothesis tests and P values. In a hypothesis test, a pre-set
rejection” threshold is established. It is typically set at P �
05, corresponding to a type I error rate (or “alpha”) of 5%. In

uch a test, the only relevant information is whether the
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138 S. Goodman
ifference observed fell into the rejection region or not, for
xample, whether or not P �.05. In that case, expressing the
esult as an inequality (P �.05 v P �.05) makes sense. But we
re usually interested in how much evidence there is against
he null hypothesis; that is the reason P values are used. For
hat purpose, it matters whether the P value equals .50, .06,
04 or .00001. To convey the strength of evidence, the exact
value should always be reported. If an inequality is used to

ndicate merely whether the null hypothesis should be re-
ected or not, that can be done only with a pre-specified
hreshold, like .05. The threshold cannot depend on the observed
value, meaning we cannot report “P �.01” if we observe P �

008 and the threshold was .05. No matter how low the P
alue, we must report “P �.05.” But rejection is very rarely
he issue of sole interest. Many medical journals require that
ery small P values (eg, �.001) be reported as inequalities as
stylistic issue. This is ordinarily not a big problem except in

ituations where literally thousands of statistical tests have
een done (as in genomic experiments) when many very
mall P values can be generated by chance, and the distinc-
ion between the small and the extremely small P values are
mportant for proper conclusions.

Misconception #9: P � .05 means that if you reject the null
ypothesis, the probability of a type I error is only 5%. Now we
re getting into logical quicksand. This statement is equiva-
ent to Misconception #1, although that can be hard to see
mmediately. A type I error is a “false positive,” a conclusion
hat there is a difference when no difference exists. If such a
onclusion represents an error, then by definition there is no
ifference. So a 5% chance of a false rejection is equivalent to
aying that there is a 5% chance that the null hypothesis is
rue, which is Misconception #1.

Another way to see that this is incorrect is to imagine that
e are examining a series of experiments on a therapy we are

ertain is effective, such as insulin for diabetes. If we reject
he null hypothesis, the probability that rejection is false (a
ype 1 error) is zero. Since all rejections of the null hypothesis
re true, it does not matter what the P value is. Conversely, if
e were testing a worthless therapy, say copper bracelets for
iabetes, all rejections would be false, regardless of the P
alue. So the chance that a rejection is right or wrong clearly
epends on more than just the P value. Using the Bayesian

exicon, it depends also on our a priori certitude (or the
trength of external evidence), which is quantified as the
prior probability” of a hypothesis.

Misconception #10: With a P � .05 threshold for signifi-
ance, the chance of a type I error will be 5%. What is different
bout this statement from Misconception #9 is that here we
re looking at the chance of a type I error before the experi-
ent is done, not after rejection. However, as in the previous

ase, the chance of a type I error depends on the prior prob-
bility that the null hypothesis is true. If it is true, then the
hance of a false rejection is indeed 5%. If we know the null
ypothesis is false, there is no chance of a type I error. If we
re unsure, the chance of a false positive lies between zero
nd 5%.

The point above assumes no issues with multiplicity or

tudy design. However, in this new age of genomic medicine, q
t is often the case that literally thousands of implicit hypoth-
ses can be addressed in a single analysis, as in comparing the
xpression of 5,000 genes between diseased and non-dis-
ased subjects. If we define “type I error” as the probability
hat any of thousands of possible predictors will be falsely
eclared as “real,” then the P value on any particular predic-
or has little connection with the type I error related to the
hole experiment. Here, the problem is not just with the P
alue itself but with the disconnection between the P value
alculated for one predictor and a hypothesis encompassing
any possible predictors. Another way to frame the issue is

hat the search through thousands of predictors implies a
ery low prior probability for any one of them, making the
osterior probability for a single comparison extremely low
ven with a low P value. Since the 1 � (posterior probability)
s the probability of making an error when declaring that
elationship “real,” a quite low P value still carries with it a
igh probability of false rejection.31,32

Misconception #11: You should use a one-sided P value
hen you don’t care about a result in one direction, or a difference

n that direction is impossible. This is a surprisingly subtle and
omplex issue that has received a fair amount of technical
iscussion, and there are reasonable grounds for disagree-
ent.33-38 But the operational effect of using a one-sided P

alue is to increase the apparent strength of evidence for a
esult based on considerations not found in the data. Thus,
se of a one-sided P value means the P value will incorporate
ttitudes, beliefs or preferences of the experimenter into the
ssessment of the strength of evidence. If we are interested in
he P value as a measure of the strength of evidence, this does
ot make sense. If we are interested in the probabilities of
aking type I or type II errors, then considerations of one-

ided or two-sided rejection regions could make sense, but
here is no need to use P values in that context.

Misconception #12: A scientific conclusion or treatment pol-
cy should be based on whether or not the P value is significant.
his misconception encompasses all of the others. It is equiv-
lent to saying that the magnitude of effect is not relevant,
hat only evidence relevant to a scientific conclusion is in the
xperiment at hand, and that both beliefs and actions flow
irectly from the statistical results. The evidence from a given
tudy needs to be combined with that from prior work to
enerate a conclusion. In some instances, a scientifically de-
ensible conclusion might be that the null hypothesis is still
robably true even after a significant result, and in other

nstances, a nonsignificant P value might still lead to a con-
lusion that a treatment works. This can be done formally
nly through Bayesian approaches. To justify actions, we
ust incorporate the seriousness of errors flowing from the

ctions together with the chance that the conclusions are
rong.
These misconceptions do not exhaust the range of mis-

tatements about statistical measures, inference or even the P
alue, but most of those not listed are derivative from the 12
escribed above. It is perhaps useful to understand how to
easure true evidential meaning, and look at the P value

rom that perspective. There exists only one calculus for

uantitative inference—Bayes’ theorem—explicated in more
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Twelve P-value misconceptions 139
epth elsewhere and in other articles in this issue. Bayes’
heorem can be written in words in this way:

Odds of the null hypothesis after obtaining the data

� Odds of the null hypothesis before obtaining the data

� Bayes’ factor

r to use more technical terms:

Posterior odds (H0, given the data)

� Posterior odds (H0, given the data)

�
Prob(Data, under H0)

Prob(Data, under HA)

here Odds � probability/(1 � probability), H0 � null hy-
othesis, and HA � alternative hypothesis.
It is illuminating that the P value does not appear any-

here in this equation. Instead, we have something called the
ayes’ factor (also called the likelihood ratio in some set-
ings), which is basically the same as the likelihood ratio used
n diagnostic testing.24,39 It measures how strongly the ob-
erved data are predicted by two competing hypotheses, and
s a measure of evidence that has most of the properties that
e normally mistakenly ascribe to the P value. Table 2 sum-
arizes desirable properties of an evidential measure, and

ontrasts the likelihood ratio to the P value. The main point
ere is that our intuition about what constitutes a good mea-
ure of evidence is correct; what is problematic is that the P
alue has few of them. Interested readers are referred to more
omprehensive treatments of this contrast, which show,
mong other things, that the P value greatly overstates the
vidence against the null hypothesis.40 (See article by Sander
reenland in this issue for more complete discussion of
ayesian approaches41). Table 3 shows how P values can be
ompared to the strongest Bayes’ factors that can be mustered
or that degree of deviation from the null hypothesis. What
his table shows is that (1) P values overstate the evidence
gainst the null hypothesis, and (2) the chance that rejection
f the null hypothesis is mistaken is far higher than is gener-
lly appreciated even when the prior probability is 50%.

One of many reasons that P values persist is that they are
art of the vocabulary of research; whatever they do or do not
ean, the scientific community feels they understand the

ules with regard to their use, and are collectively not familiar

able 2 Evidential Properties of Bayes’ Factor Versus P Value

Evidential Property
P

Value
Bayes’
Factor

nformation about effect size? No Yes
ses only observed data? No Yes
xplicit alternative hypothesis? No Yes
ositive evidence? No Yes
ensitivity to stopping rules? Yes No
asily combined across experiments? No Yes

art of formal system of inference? No Yes
nough with alternative methodologies or metrics. This was
iscovered by the editor of the journal Epidemiology who tried
o ban their use but was forced to abandon the effort after
everal years.42

In the meantime, what is an enlightened and well-meaning
esearcher to do? The most important foundational issue to
ppreciate is that there is no number generated by standard
ethods that tells us the probability that a given conclusion is

ight or wrong. The determinants of the truth of a knowledge
laim lie in combination of evidence both within and outside
given experiment, including the plausibility and evidential

upport of the proposed underlying mechanism. If that
echanism is unlikely, as with homeopathy or perhaps in-

ercessory prayer, a low P value is not going to make a treat-
ent based on that mechanism plausible. It is a very rare

ingle experiment that establishes proof. That recognition
lone prevents many of the worst uses and abuses of the P
alue. The second principle is that the size of an effect mat-
ers, and that the entire confidence interval should be con-
idered as an experiment’s result, more so than the P value or
ven the effect estimate. The confidence interval incorporates
oth the size and imprecision in effect estimated by the data.
There hopefully will come a time when Bayesian measures

f evidence, or at least Bayesian modes of thinking, will sup-
lant the current ones, but until then we can still use stan-
ard measures sensibly if we understand how to reinterpret
hem through a Bayesian filter, and appreciate that our infer-
nces must rest on many more pillars of support than the
tudy at hand.
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